Linear regression in R
Cheatsheet

2024-09-06

[J .
1 License

This work was developed using resources that are available under a Creative Commons
Attribution 4.0 International License, made available on the SOLES Open Educational
Resources repository by the School of Life and Environmental Sciences, The University
of Sydney.

1 Assumed knowledge

e You know how to install and load packages in R.
e You know how to import data into R.
¢ You recognise data frames and vectors.

I Data structure

The data should be in a long format (also known as tidy data), where each row is
an observation and each column is a variable (Figure 1). If your data is not already
structured this way, reshape it manually in a spreadsheet program or in R using the
pivot_longer () function from the tidyr package.



https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/usyd-soles-edu
https://github.com/usyd-soles-edu

Sex BW

F 215 S
M 255 FM
F 295 215 255
F 270 2.95 2.20
M 220 270 2.55
F 185 1.85 2.60
M 255 —
M 260

Figure 1: Data should be in long format (left) where each row is an observation and each
column is a variable. This is the preferred format for most statistical software.
Wide format (right) is also common, but may require additional steps to analyse
or visualise in some instances.

I Data

For this cheatsheet we will use data from the penguins dataset from the palmerpenguins
package. You may need to install this package:

install.packages("palmerpenguins")
data(penguins)

About

Regression analysis is the most commonly used statistical technique for modelling the rela-
tionship between variables that can be continuous, categorical or a mix of both. In fact,
other techniques such as the t-test, ANOVA, ANCOVA and even non-parametric tests can be

considered as special cases of regression analysis. In this cheatsheet, we will focus on linear
regression.

R packages used
Implementing linear models

Simple linear regression



fit01 <- Im(body_mass_g ~ flipper_length mm, data = penguins)

Multiple linear regression

fit02 <- 1m(body_mass_g ~ flipper_length mm + bill_ length_mm,
data = penguins

Interactions

fit03 <- 1m(body_mass_g ~ flipper_length_mm * bill_length_mm,
data = penguins

Regression involving categorical variables

fit04 <- 1m(body_mass_g ~ species + sex, data = penguins)

Regression involving a mix of continuous and categorical variables

fit04 <- 1m(body_mass_g ~ species + flipper_length_mm,
data = penguins

Assumptions

Use the plot() function on the linear mode object to check the assumptions of the linear
regression model.

par(mfrow = c(2, 2)) # Set up a 2x2 grid of plots
plot(£it01)



Residuals vs Fitted Q-Q Residuals

N 2 400
S g o 4 1790 -
g " g 7
= 2
'g o S o -
B2
04 g ]
o
S g Y7
. (9
T T T T 1 |
3000 4000 5000 -3 -1 0 1 2 3
Fitted values Theoretical Quantiles
Scale-Location Residuals vs Leverage
% 040 w ¥
3 @ S ©
w = N
e o
T © 7]
= ©
£ 3 g 7]
5 g
& o 5 o -
~ © | T T T
3000 4000 5000 0.000 0.005 0.010 0.015
Fitted values Leverage

par (mfrow = c(1, 1)) # Reset the plot layout

Viewing interactions

Use the emmeans () function to interpret interactions in a linear model. For continuous vari-
ables, you need to specify the range of the covariate with the cov.reduce argument — set to
range to avoid the default of using the mean.



emmip(fit03, flipper_length mm ~ bill length mm, cov.reduce = range)
p pper_length_ _length_ g

6000 -
S 5000-
g flipper_length_mm
o
< — 172
S 4000 - — 231
=
-
3000 - \

40 50 60
bill_length_mm

emmip(£it03, bill_length mm ~ flipper_length mm, cov.reduce = range)

6000 -
S 5000-
o bill_length_mm
D
S — 321
S 4000~ — 596
=
-
3000 -

1 1 1 1 1 1 1
170 180 190 200 210 220 230
flipper_length_mm



Other resources

o It might be worthwhile to use the performance package to assess model fit (including
assumptions using check_model()).

e I use this a lot: the interactions package for visualising interactions in GLM models.
However it is very technical and not for beginners — use if you are comfortable with R.

¢ The gtsummary package is great for summarising regression models using tbl_regression(),
but you may need to tweak it further to get the output you want. Another package that
can do something similar is the sjPlot package, using tab_model(). Alternatively,
you can manually create the table (sometimes it can be easier to copy
numbers depending on your level of expertise).


https://easystats.github.io/performance/
https://interactions.jacob-long.com/
https://www.danieldsjoberg.com/gtsummary/
https://www.danieldsjoberg.com/gtsummary/reference/tbl_regression.html
https://strengejacke.github.io/sjPlot/reference/tab_model.html

	About
	R packages used
	Implementing linear models
	Assumptions
	Viewing interactions
	Other resources

